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Numerical solutions are presented for the problem of thermosolutal convection in a 
rectangular enclosure subjected to simultaneous heating of the bottom and sidewalls. A 
steady model based on primitive variables and an unsteady model solved using a 
high-accuracy numerical scheme are used to study the problem. Effects of the Lewis 
number, buoyancy ratio, aspect ratio and the Rayleigh number on flow and heat and mass 
transfer rates are studied. Details of oscillatory solutions and flow bifurcations are 
presented. 
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1. I n t r o d u c t i o n  

Thermosolutal convection in enclosures is of fundamental 
importance in such diverse areas as crystal growth, solar ponds, 
casting of alloys and mining of gas caverns for oil storage. In 
nature, thermosolutal convection occurs in the oceans, shallow 
water bodies, magma chambers and the earth's crust (mantle 
convection). 

Over the past several years, substantial progress has been 
made in understanding combined natural convection for cases 
in which gradients of temperature and species concentration 
are either vertical or horizontal (Chang et al. 1993, B~ghein et 
al. 1992, Han and Kuehn 1990, Weaver and Viskanta 1991a, 
1991b, Trevisan and Bejan 1987, Kamotani et al. 1985). While 
the effect of lateral heating on a double-diffusive system has 
been studied (Bergman and Ungan 1988), not much attention 
has been paid to the problem of thermosolutal convection in 
an enclosure for cases in which gradients of temperature or 
concentration cannot be strictly classified as being vertical or 
horizontal. The aim of this paper is to report on convection in 
an enclosure whose bottom and sidewalls are strongly heated, 
while the left wall is maintained at a higher level of 
concentration compared to the right one. This problem differs 
from the classical Rayleigh-Brnard situation in that motion 
immediately ensues for any nonzero Rayleigh number. The 
present problem is of considerable importance in under- 
standing the effects of mass transfer on flow during contact 
metamorphism in geophysics (Furlong et al. 1992), in the design 
of heat recovery systems (Reay 1979) and furnace heat transfer, 
design and fenestration. 

In practice, thermal boundary conditions considered in the 
present work are realized when an enclosure made of a high 
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thermal conductivity material is heated from the bottom, 
resulting in a uniform sidewall and bottom temperature. In 
the field of geophysics, most cases of contact metamorphism 
are known to be characterized by strong lateral thermal 
gradients in addition to mass transfer between the host rock 
and the fluid. This work represents a first step toward 
constructing realistic thermal models of metamorphic terranes 
(e.g., models that take rock porosity and permeability into 
account). 

In the field of crystal growth, it is widely acknowledged that 
solute segregation and defect density have a direct bearing on 
the quality of the crystal. To increase compositional uniformity 
and enhance crystal integrity, it is important to understand the 
role of convection in the melt (Ostrach 1983). Since the 
Czokralski crystal growth technique is characterized by heating 
of the ampoule walls and bottom, the present work should be 
of help in understanding the effects of a horizontal solute 
gradient on flow in the ampoule. Surface striations caused by 
oscillations due to thermal and species buoyancy are generally 
known to have a deleterious effect on growth of the crystal 
and, hence, conditions that give rise to oscillatory solutions are 
important from a practical point of view. 

One aspect of the present problem that makes it particularly 
difficult lies in the fact that heating an enclosure both from the 
bottom and the sides makes the flow unsteady. Hence, 
steady-state solutions cannot be expected for all values of the 
Rayleigh number. Hence, a time-dependent model has been 
employed in the present work to capture the unsteady 
solutions. Since information on the nature of the oscillatory 
solutions (e.g., time series, phase plane behavior, etc.) is 
important both from theoretical and practical points of view, 
these issues are examined at length in a subsequent section. 

Even though chaos in thermosolutal convection was first 
established ten years ago (Moore et al. 1983), details of the 
underlying mechanism are being understood only recently 
(Chang and Lin 1993). Much of the earlier work done in this 
area is concerned with buoyant flow of a single-component 
fluid and some of the important work done is summarized in 
the excellent review article by Yang (1988). The presence of an 
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additional source of buoyancy that can augment or oppose 
that due to temperature alone, and large differences in the 
diffusivities of heat and mass, can greatly complicate 
multicomponent convection. The phenomena of salt fountains, 
salt fingers and sharp diffusive interfaces offer some examples 
of the way in which nonlinearities of the system can get 
manifested. Carefully conducted laboratory experiments and 
numerical simulations provided ample evidence to the fact that 
thermosolutal convection is an inherently unstable phenome- 
non (Turner 1975, Jiang et al. 1988). A survey of the existing 
literature showed that studies aimed at understanding the 
complex phenomenon of instability in thermosolutal convec- 
tion are relatively few in number. One of the aims of this paper 
is to report on oscillatory convection in an enclosure and to 
study the flow bifurcations and route(s) to chaos. 

Studies of transitions and bifurcations have been associated 
with the onset of turbulence for a long time. However, solutions 
reported here exhibit only temporal nonperiodicity (chaos) with 
some broadband noise and hence, as Yang (1988) points out, 
such cases represent, at best, only weak turbulence, not full 
turbulence due to lack of the corresponding spatial behavior. 
For single-component convection, several routes to turbulence 
have been proposed earlier and many of them have been 
observed experimentally. The scenario proposed by Fei- 
genbaum (1979) and Ruelle et al. (1978) are well known. In the 
Feigenbaum scenario, an infinite sequence of period doublings 
leads to turbulence. Hence, a stable steady-state (S) solution 
precedes a simple periodic solution (P, in the notation of Gollub 
and Benson 1980), which in turn precedes solutions 
corresponding to subharmonic bifurcations (P2, P4, ...). At the 
end of this sequence is the nonperiodic or chaotic regime, N. 
In the Ruelle-Takens-Newhouse (RTN) scenario, only three 
Hopf bifurcations are needed to reach N. This route is 
represented by S--, P - ,  QP2 ~ N, where QP2 represents a 
quasi-periodic attractor. 

It is now widely known that, even though Navier-Stokes 
equations have infinite degrees of freedom, turbulence in 
confined buoyant flows exhibits only a few of these (i.e., 
transition to turbulence would involve only a few bifurcations, 
but not infinitely as many as envisaged in the classical 
Landau-Hopf conjecture [Landau and Lifshitz 1982]). This has 
been confirmed by several carefully conducted experiments 

(e.g., Libchaber and Maurer 1982). This point has practical 
significance in that it opens up the possibility of modeling 
turbulence using essentially low-dimensional systems (e.g., a 
small number of ordinary differential equations) by projecting 
the Navier-Stokes equations on a low-dimensional space. To 
this end, understanding the confined buoyant-flow problem for 
various different initial and boundary conditions would be of 
great help. The present paper seeks to study the effects of heated 
confining sidewalls and a solute gradient on the classical 
Rayleigh-B6nard problem for the rigid-rigid case. 

Earlier numerical and experimental studies for single- 
component convection showed that subharmonic bifurcations 
are very sensitive to details of spatial structure and are mainly 
caused by corner vortices (Kessler 1987). Recent work on 
thermosolutal convection shows that the processes are much 
more complex, involving the interaction of the thermal and 
solutal boundary layers. This interaction was found to generate 
secondary flows with periodically separating blobs. These 
seiche fluctuating modes are believed to be related to the 
swaying of the unsteady solutal boundary layer (Chang and 
Lin 1993). 

In spite of the fact that several theories are being put forward 
to explain the observed phenomenon of thermosolutal 
convection, there is a need to carry out fundamental studies 
related to instability and transition. One of the reasons for this 
lies in the fact that numerical simulations do not always capture 
the real instabilities and routes due to false diffusion inherent 
in most numerical schemes. For instance, it is not uncommon 
to find that period doublings and chaos are a purely numerical 
artifact exhibited by finite-difference equations, while their 
continuum counterparts are not known to show any such 
behavior. (See Lorenz 1989 for one such example, the logistic 
equation.) It is from this point of view that a high-accuracy 
numerical scheme is employed in the present work to study the 
oscillatory solutions. 

2. Steady two-dimensional convection 

2. I. Ma thema t i ca l  mode /  

Consider a rectangular enclosure (Figure 1) whose four sides 
are all isothermal. We assume that the enclosure is infinitely 

Notation 
AR 
C 
D 
F 
g 
GrT 
Grs 
h 
hi 
hm 
H 
K1,Kz 
L 
Le 
N 
Nu x 
N__~u, 
Nu 
P 
Pr 
Ra t  
S 

Aspect ratio, H/L 
Dimensionless concentration 
Diffusion coefficient 
First derivative of stream function, Equation 30 
Gravitational acceleration 
Thermal Grashof number (gflrATL3/v 2) 
Solutal Grashof number (gfcACL3/v 2) 
Heat transfer coefficient 
First space step near a wall, Equation 29 
Mass transfer coefficient 
Height of enclosure 
Constants defined in Equation 13 
Width of enclosure 
Lewis number (ct/D) 
Buoyancy ratio (Grs/Grr) 
Local Nusselt number (h(x)L/k) 
Local Nusslet number (h(y)H/k) 
Mean Nusselt number 
Dimensionless pressure ( P' L2 p / I.I 2) 
Prandtl number (v/ct) 
Thermal Rayleigh number (GrrPr)  
Second derivative of stream function, 
Equations 31-3 3 

S c  

Sh 
t 
T 
b/, U 
Y~,x 

Schmidt number (v/D) 
Local Sherwood number (hmH/D) 
Mean Sherwood number 
Time (s) 
Dimensionless temperature 
X and Y components of velocity 
Extent of domain in Y direction 

Greek symbols 

ct Thermal diffusivity 

fir Volumetric expansion coefficient, ( r )  = - ~  \OT,]p,c 

fc Volumetric expansion coefficient, (C) = + P \~CJp,r 

~, Tuning parameter defined in Equation 13 
p Density 
r Dimensionless time (tv/L 2) 
v Kinematic viscosity 
~, ~/ Dummy variables defined in Equation 13 

Dimensionless vorticity (('LE/v) 
~O Dimensionless stream function (~k'/v) 
). Wachspress iteration parameter, Equation 32 
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long in the Z-direction (perpendicular to the plane of the paper) 
so that the flow may be treated as being two-dimensional. The 
left, right and bottom walls of the enclosure are heated, while 
the top wall is at ambient temperature. The left sidewall is 
maintained at a higher level of concentration compared to the 
right one. The top and bottom walls are solute impermeable. 
We assume that the flow is laminar and incompressible and 
that the Dufour, Soret, viscous dissipation and variable 
property effects are all negligible. In addition, we assume that 
the enclosure walls are impermeable. While this assumption 
seems to be contradictory to that of the existence of mass 
transfer through the walls, Trevisan and Bejan (1987) have 
shown (using scale analysis) that it is valid when the Lewis 
number is sufficiently high or when the solution is dilute (or 
both). Since the present work is concerned with situations in 
which the Lewis number is much greater than unity (Le ~ 100 
is chosen to represent the water-salt system), we are justified 
in modeling the walls as being impermeable. With these 
assumptions, the steady governing equations, written using the 
primitive variables, appear as follows. 

Energy: 

~T ~T 
u + v - -  = Pr-I(V2T) (1) 

dX c~Y 

Species concentration: 

~C aC 
U - -  "[- /) - -  = S c - I ( V 2 C )  (2) 

dX dY 

Momentum: 

~u ~u ~P 
u - -  + v - F (V2u) 

dX ~ Y t3X 

dv c~v c~P 
u - - + v  - 

tgX ~Y ~Y 

Here, 

+ (V2v) + (GrTT - GrsC) 

Gr r = gflrATLa/v 2, Gr s = gflcACLa/v 2, 

T = (T'  -- T'L)/AT, C = (C' - C'L)/AC, 

X = x / L , Y  = y/L,  u = i f /U ,  v = v ' /U and U = v/L 

(3) 

(4) 
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Primes in these quantities denote dimensional variables. AT 
and AC are the maximum temperature and concentration 
differences in the system given by A T = ( T L - T r )  and 
AC = ( C L  - -  CR). Boundary conditions for the above system of 
equations are given in Equations 5-8. 

X = 0 ( V Y ) : T = I , C =  1 (5) 

X = I ( V Y ) : T = I , C = 0  (6) 

dC 
Y = 0 ( V X ) : T =  1 , - - = 0  (7) 

dY 

dC 
Y =  I ( V X ) : T = 0 , - - = 0  (8) 

dY 

For the boundary conditions in Equations 5-8, flows 
resulting from concentration and temperature differences can 
either augment or oppose each other depending on whether 
the buoyancy ratio N (=Grs/Grr)  is negative or positive. 
(Note the definitions of volumetric expansion coefficients 
associated with temperature and species given in the 
nomenclature.) We also note that the words aiding or opposing 
refer to the action of buoyancy at the left sidewall and that the 
solution for one case is the laterally inverted solution of the 
other. Hence, changing the sign of the buoyancy ratio has the 
effect of interchanging the left and right wall Nusselt numbers 
while the bottom Nu and the left wall Sherwood number do 
not change. This point has been actually verified by obtaining 
solutions over a wide range of buoyancy ratios. In view of this 
symmetry around N = 0, we consider only the opposing flow 
regime in this paper. 

The local Nusselt and Sherwood numbers are evaluated 
using the following equations. 

bottom wall 

top wall 

(9) 

leftwa. 

- ~X x=l right wall 

(t3C) left wall (11) 
S h y = -  ~ x=o 

Mean Nusselt and Sherwood numbers have been obtained 
by integrating along the wall. For instance, the following 
relation is used to obtain the average Nusselt number for the 
left wall. 

1 fo '~ Nu L = ~ Nut dY (12) 

2.2,  M e t h o d  o f  s o l u t i o n  

Finite-difference forms of governing equations have been 
derived using microcontrol-volume integration. A staggered 
grid approach and the power law scheme have been used. The 
velocity-pressure coupling has been handled using the 
Semi-Implicit Method for Pressure Linked Equations--Re- 
vised (SIMPLER) algorithm (Patankar 1980). The resulting 
system of linear algebraic equations is solved iteratively by a 
line-by-line application of the tri-diagonal matrix algorithm. 
An additive correction (block correction) scheme has been used 
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to accelerate the rate of convergence (Settari and Aziz 1973). 
In view of the expected differences in the diffusivities of heat 
and mass, an efficient grid-clustering scheme is essential to 
resolve the length scales properly. We chose the Roberts 
transformation to do this (Roberts 1971). This transformation 
has several desirable properties, one of them being its ability 
to generate highly nonuniform grids such that steps increase 
linearly in the interior and much more rapidly near the walls 
(on a length scale on the order of the boundary-layer thickness, 
7). For a given number of grid points, therefore, the tuning 
parameter 7 can be adjusted to achieve the desired resolution 
near the walls. Grids in X and Ydirections have been generated 
using the uniformly spaced dummy variables ~(X) and v/(Y), 
respectively. For example, the following formula is used in the 
Y direction. 

Ymax e K2-  1 
YJ= 2 + K 1 -  j = 2 ' 3  . . . . .  N Y  (13) 

e x~ + 1 ' 

Here, 

g 1 - 

Y.°x 

2x/1 - 2y/Y,,,.,~ 

and 

Fro,:, 
r/(Y) = t/j = (j -- DArt - 

( N Y -  l) 

In Equation 13, Yj denotes the locations of the control 
volume faces, N Y  denotes the number of points, Y=,x = H/L, 
and 7 is a tuning parameter. As 7 ~ 0, the above formula 
generates very fine grids near the walls. Computations have 
been terminated when the relative error in the dependent 
variables is less than 10 -6 between two successive iterations. 
It was also required that the maximum mass source should be 
less than 10 -6 to declare convergence. Local Nusselt and 
Sherwood number data, spaced out at unequal intervals, have 
been integrated using an algorithm proposed by Gill and Miller 
(1972) to obtain the mean values. 

2.3. Grid dependence studies and mode /va l i da t i on  

A series of numerical experiments have been carried out to 
make sure that solutions obtained are grid independent and 
accurate. An energy balance applied to the enclosure gives the 
conclusion that at steady-state, the algebraic sum of the Nusselt 
numbers evaluated on all the four walls should go to zero. That 
is to say, 

4- 
~-~,  = ~ 

i = 1  

where e should be a small number. In the present work, e 
as given here is found to be of the order of 10-5, thus indicating 
that the fluxes are conserved. 

, 0  . . . . .  . . . . . . . . . .  

0.00 0.25 0.50 0.75 1.00 

Distance, X 

Figure 2 Effect of grid size on the local Nusselt number distribution 
along the bottom wall for the case of combined convection (These 
results indicate that a 41 x 41 variable grid is adequate up to a 
Rayleigh number of 10s.) 

Results obtained from the present algorithm have been 
compared with the benchmark solutions reported by de Vahl 
Davis (1983) for the case of pure natural convection in an 
enclosure. Excellent overall agreement between the solutions 
was obtained. The maximum difference in the mean Nusselt 
numbers was found to be less than 1 percent. Care has been 
taken to ensure that results obtained are independent of the 
grid parameters. Demonstration of grid independence for the 
present problem (combined convection) is provided in Figure 
2, which shows variation of the local Nusselt number along the 
bottom wall. All computations reported in the present paper 
have been carried out using a 62 x 62 variable grid for an 
aspect ratio of 1.0. A 42(X) × 162(Y) variable grid is used for 
AR = 4.0. The tuning parameter 7 has been adjusted such that 
at least five control volumes are placed inside the thinnest of 
the boundary layers. A guideline for estimating the relative 
thicknesses of the thermal and concentration boundary layers 
has been obtained from the earlier work of Kamotani et al. 
(1985) who proposed the following relation: 

6r - -  = [Le N] °'25 (14) 
&c 

Further validation of the present model has been done by 
comparing the present solutions with the experimental work of 
Han and Kuehn (1991) for the case of combined convection in 
an enclosure with horizontal temperature and concentration 
gradients (Table 1). Excellent agreement has been obtained 
between the two results. 

A few comments on the choice of the method of solution are 
in order. The major motivation for using the present (steady, 
iterative) approach lies in the ability to speed up the rate of 
convergence using an acceleration technique (here, block 

Table 1 Comparison of present numerical solutions with experimental data of Han and Kuehn (1991) for the case of 
combined convection in an enclosure with horizontal temperature and concentration gradients 

Nu Nu Sh Sh 
AR Grr Gr s N Pr Sc Expt. Present work Expt. Present work 

1.0 1.1 x 106 6.8 x 106 - 6 . 3  8.4 2420 9.5 9.30 83.0 83.83 
1.0 3.7 x 10 s 3.2 x 106 - 8 . 6  8.5 2390 5.3 5.18 92.0 92.3 
4.0 1.8 x 105 2.7 x 106 - 1.5 7.7 2400 20.8 20.63 121.0 1 21.98 
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correction). The time-marching approach based on the 
unsteady governing equations is found to be slow and time 
consuming. For  a typical case (Le ~ 100, Ra t  ~ 10 ~, A R  ~ 1), 
the present algorithm is found to converge to a steady-state 
solution in about 800 iterations on a 62 x 62 grid. The 
unsteady approach, on the other hand, required about 50,000 
iterations with a maximum allowable time step of 1 x 10 - s -  
a speed-up by a factor of about 50! 

2 . 4 .  R e s u l t s  a n d  d i s c u s s i o n  

Pure thermal and pure species natural convection. 
These two situations are important as they represent the 
limiting cases of N = 0 and N = o~. For  the pure heat transfer 
situation, shown in Figure 3(a), the fluid rises up along the 
heated sidewalls, hits the top wall and comes down in a jet 
along the centerline, thus forming two counterrotating cells. It 
is interesting to note that even though the thermal boundary 
conditions are symmetric around X = 0.5, the flow field at this 
Prandtl number is not symmetric. For  the pure mass transfer 
case, the fluid sinks at the left wall, which is maintained at a 
higher level of concentration. For the range of Grs considered 
in the present work, a single cell rotating in the counter- 
clockwise direction is obtained for Sc = 700. Heat transfer 

A 

B 

C 

F i g u r e  3 Stream funct ion and isotherm plots for the limiting case 
of pure thermal convection: (a) RaT= 103 , (b) RaT= 10 s, (C) 
RaT= 107 
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0,0 

103 104ayleig h 105 106 107 
Number, Ra T 

F i g u r e  4 Variation of average Nusselt numbers (for the left, right 
and bottom walls) as a function of the Rayleigh number for the 
case of pure thermal (N = ~ )  convection (Pr = 7.0) 

results for the case N = 0 can be accurately represented by the 
following correlations. 

NuL = 2.273 + 0.0738 Ra °'28° (15) 

Nu R = 2.151 + 0.1090 Ra°r T M  (16) 

+ F (  RaT y /3  /Ral/a\(t-la(Ra~'/6.66) 
NuB=2.77  L\18~7~, / - 1]" - 1 . 9 7 ~ )  

(17) 

The notation [ ]* in Equation 17 implies that if tn¢ quantity 
in the square brackets is negative, it should be taken as zero. 
These results are summarized in Figure 4. It can be seen that 
the bottom Nusselt number, which is initially much smaller 
compared to the left and right wall Nusselt numbers, increases 
gradually with the Rayleigh number and eventually becomes 
much higher than both these numbers. This is due to increased 
mixing caused by the descending plume of fluid, which jets 
down along the centerline and hits the bottom wall vigorously, 
thus causing an increase in the local Nusselt number around 
X = 0.5. (See Figures 3b and 3c.) 

C o m b i n e d  n a t u r a l  c o n v e c t i o n .  Each f low regime fo r  the 
combined convection case can be uniquely identified by a set 
of five parameters: RaT, Pr, Le, AR and N. Due to interest in 
water and fluids that closely represent water, the Prandtl 
number is fixed at 7.0. We now study, systematically, the effect 
of the remaining four dimensionless numbers on velocity, 
temperature and species concentration fields while keeping the 
other parameters fixed. 

E f f e c t  o f  t h e  Lewis number. Figure  5 shows effect o f  the 
Lewis number on flow, temperature and concentration fields 
for Ra t  = 104, N = + 1 and A R  = 1. For small L¢, the flow is 
unicellular and in the counterclockwise direction, while at the 
highest Le considered in the present work (1,000), the flow 
exhibits two counter rotating cells. This is a consequence of the 
fact that thickness of the concentration boundary layer 
decreases with increasing Le, and in the limit as Le ~ ~ ,  the 
flow field becomes identical to the pure heat transfer case. The 
effect of the Lewis number on heat and mass transfer rates is 
summarized in Figure 6. 

Effect of the buoyancy ratio. Figure 7 shows the effect 
of N on flow, temperature and concentration fields for 
Le = 100 and AR = 1. The thermal Rayleigh number Ra t  is 
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A 

B 

C 

D 
T 

Figure 5 Effect of the Lewis number on velocity, temperature and 
species concentration fields: (a) L e = l ,  (b) L e = 1 0 0 ,  (c) 
Le = 500, (d) Le = 1000 (This study has been carried out for 
RaT= 104 , N = I , A R =  1.) 
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Effect of the Lewis number on heat and mass transfer 

fixed at 103, while the solutal Rayleigh number is varied. The 
sequence of  stream-function plots clearly shows a transition 
from the heat transfer-dominated situation (N ~ 0) char- 
acterized by the presence of  two counter-rotating cells, to one 
dominated by mass transfer (N ~ oo, single cell). We notice that 
the case N = + 30 effectively represents the pure mass transfer 

case as can be seen from the distinct boundary layers on the 
sidewalls and the uniform core region. The effect of the 
buoyancy ratio on heat and mass transfer rates is summarized 
in Figure 8. Keeping the earlier observation regarding the 
symmetry of the flow around N = 0 in mind, we note that the 
heat and mass transfer data for the opposing case can also be 
used for the aiding case. 

A 

C 

D 

Figure 7 Effect of buoyancy ratio (N) on velocity, temperature and 
species concentration fields: (a) N =  +0 .1 ,  (b) N =  +0.5 ,  (c) 
N =  +5 ,  (d) N =  + 3 0  (The Rayleigh number RaT, Le and ARare  
fixed at 103, 100, and 1.0, respectively.) 
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E f f e c t  o f  the aspect r a t i o .  The effect of the aspect rat io is 
studied for 0.25 _< AR <_ 4.0. Figure 9 shows typical results for 
a shallow enclosure (AR = 0.25) and a deep one (AR = 4). For  
the shallow enclosure, we notice the presence of one 
recirculating cell on either side of the vertical wall and a 
low-velocity core region communicating with the cell at the 
right wall. The deeper enclosure, on the other hand, shows a 
relatively stronger circulation as can be seen from the steep 
gradients of species concentration near the sidewalls. Heat and 
mass transfer data, shown in Figure 10, suggest that there is a 
critical value of the enclosure aspect ratio beyond which the 
bottom behaves like an effectively insulated wall. This critical 
value of AR is around 2.0. These results deafly indicate that 
the aspect ratio has a significant effect on heat and mass transfer 
rates. 

E f f e c t  o f  RaT. Figures 1 l a -c  show the effect of increasing RaT 
for fixed values of N(+I ) ,  Lc (10) and AR (1.0). As can be 
expected, strength of the recirculating cell increases with RaT, 
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Figure 9 Effect of the aspect ratio on velocity, temperature and 
concentration fields: (a) AR = 1/4, (b) AR = 4 
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U 
Figure 11 Effect of RaTon velocity, temperature and concentration 
fields: (a) RaT= 103 , (b) RaT= 104 , (c) RaT= 10 s (Here Le, N 
and AR have been fixed at 10.0, 1.0 and 1.0, respectively.) 

and since the solutal Rayleigh number also increases (to keep 
the ratio N fixed), the concentration boundary layer becomes 
thinner. This behavior can be clearly seen from isopleths of 
concentration. Heat and mass transfer data are summarized in 
Figure 12. Stable steady-state solutions could not be obtained 
above Ra t  = 106. The mass residual (which gives an indication 
of convergence) and the velocity and species concentration are 
found to oscillate indefinitely. 

Similarly, steady-state solutions could not be obtained in the 
Rayleigh number range 3 x 103-3 x 104 for Le = 100 and 
N = 1. No attempt has been made to obtain the average 
Nusselt and Sherwood numbers in this range by integrating 
the time-dependent quantities over the period of oscillation. 
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3. F l o w  b i f u r c a t i o n s  and  r o u t e s  t o  c h a o s  

3.1. Mathematical  model  

Consider the dissipative dynamic system represented by the 
following combined convection problem. The physical system 
considered here and the assumptions on which the model is 
based are essentially the same as in the previous section. The 
unsteady equations make use of the vorticity-stream-function 
approach. 

Energy: 

OT c~T dT 
- -  + u - -  + v - -  = P r -  I(V2T) (18) 
0t c3X ~3 y 

Species concentration: 

OC OC OC 
- -  + u - -  + v - -  = Sc-1(V2C) (19) 
Ot OX OY 

Vorticity transport: 

- a r  l°r  ar 0~ + u - -  + v = (V20 + (20) 
aS ox  \ox/  \ox/ 
Stream function: 

VaO = ( (21) 

Velocity." 

u = - -  (22) 
dY 

,9,p 
v - (23) 

dX 

Here, 

= ~'LZ/v, ~k = ~k'/v and z = tv/L 2 

All other quantities have been made dimensionless as in the 
previous section. 

Init ial  and boundary condi t ions.  

t = O : u = v =  T = C = ~ = ~ = O  

t > O : X = O ( V Y ) :  T =  1, C = l , ~ k = 0 , ( = ( w  

X = I(VY): T =  1, C = 0 ,  0 = 0 ,  ( = ~'~, 

(24) 

(25) 
(26) 

3C 
Y = 0 ( V X ) :  T =  1 , ~ = 0 , ~ k = 0 , ( = ( , ,  (27) 

OC 
Y =  l tVX):  T = 0 , ~ = 0 ,  f f = 0 , ; = ( . ,  (28) 

The boundary vorticity ~w is evaluated using the following 
third-order accurate Pad6 approximant that was first proposed 
by Hirsch (1975, 1983). 

12 6 
~,, = haZ E~b~ + x + ~bw] + ~- [ ( f f . ) , , . ,  + (~.),,-I 

1 

+ (0..)~+, + O(h~) (29) 

In Equation 29, h ~ represents the space step near the wall and 
n denotes the coordinate normal to the wall. 

3.2. Me thod  o f  solut ion 

The numerical method used with this model is a combination 
of a second-order scheme (for solving the energy, concentration 
and vorticity equations) and a fourth-order compact Hermitian 
scheme for solving the stream-function equation. The higher 
order scheme assumes that in addition to the dependent 
variable, its first and second derivatives are also unknown in 
the domain of interest. One of the difficulties in implementing 
such a scheme lies in the specification of appropriate boundary 
conditions. Even though there exist higher order compact 
relations for calculating the boundary values of first and second 
derivatives, such methods are not always appealing from a 
physical point of view. The higher order method, when applied 
to the stream-function equation, does not suffer from such a 
drawback, because first and second derivatives of stream 
function are simply related to velocity and vorticity. The 
combined method compares favorably with a complete 
fourth-order scheme in terms of accuracy, while still retaining 
the basic advantage of a second-order method--i ts  speed. For 
example, Bontoux et al. (1979) report that the combined 
method takes only 15 percent more computational time than 
a second-order scheme, while the fourth-order scheme takes 
about 280 percent more time. In the present work, the parabolic 
equations are solved by marching in time using the alternating 
direction implicit (ADI) scheme. The elliptic stream-function 
equation is solved iteratively using the ADI scheme with 
Wachspress parameters (Wachspress 1979). The following 
three-point relations connecting the function to its first and 
second derivatives form the basis of the higher order method 
(Hirsch 1983). 

4 4 2 

(1 + flj)2 Fj+~ + 4Fj -{ (1 + fir')2 Fj_~ + (hi + hg_,) 

I 4(1 - fl~) 
x - 4 (2 + f l f ' )~kj+ 1 + - -  ~,j 

(1 + flj)2 /tj 

+ (1 + f i r ' ) 2  (2 + ,Sj)0j_ 1 = 0 (30) 

1 [ f l j + l - f l / t  
12 ~_ I + , B  i S J + I + ( ~ + 3 + # f ~ ) S J  

s, l 
1 F Oa*, ~kj_, ] = 0 (31) 

(hjhj_,)L(i ~ 3,) 0, + (1 + &-')J 
F and S in Equations 30 and 31 represent the first and second 

derivatives, respectively, and fl~ = hj/h~_ 1. After solving the 
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stream-function equation, the velocity field is calculated to 
fourth-order accuracy using the relation (Equation 30) for the 
first derivative and the definitions of the velocities (Equations 
22 and 23). As an example of block compact integration of the 
stream-function equation, the following equations are obtained 
during the first half-step of the ADI scheme (implicit in the X 
direction). 

~ ¢ , * , i  - S *  = C "+1 k k =~j - ,,j + St, J + 21~ki. i 

1 [fl ,+l--fli-'  _ ,  , 
12~_ 1 + ~ i  S,*+, j+( f l ,+3+f l ,  )S,,j 

f l - x  + 1 - fl, S.*_,j-]J + 
1 + ,8 ;  -~ 

1 F ~k,* , , j  • ~k,*_ ~,j l 
( h , ~ _ x ) L ( l + ~ )  ¢ 'J  + ( 1 - + ~ - , ) j  = 0  

(32) 

(33) 

In Equations 32 and 33, Sx and Sy denote the second 
derivatives of the stream function in the X and Y directions, 
respectively, and 2 represents the Wachspress iteration 
parameters. The superscripts * and k denote the intermediate 
and previous time levels in the ADI step, while n + 1 indicates 
that the most recently calculated values of vorticity are being 
used. The above 2 x 2 block tri-diagonal system is solved using 
von Rosenberg's bi-tridiagonal algorithm (von Rosenberg 
1969). The Wachspress parameter significantly affects the 
overall speed of computations and for best results a sequence 
of these parameters should be used (Hageman and Young 
1981). 

3.3. Temporal and spatial grid refinement 

The time step (Az) used to integrate the unsteady equations has 
been chosen carefully. Az has been decreased until there is no 
appreciable change in the transient results. Step sizes used in 
the present work are typically on the order of 10-5. This value 
is decreased by a factor of ten during the initial period of 
simulations when the transient effects are expected to be strong. 

Variable grids in both X and Y directions have been 
generated using Roberts' transformation (Equation 13). All 
computations carried out using the present combined scheme 
have been done using a 41 x 41 grid (except those for an Rat  
of 106, in which case a 61 x 61 grid was used), since the 
Rayleigh numbers considered here are quite low. It is well 
known that for a given accuracy, a second-order scheme 
requires about four times the number of grid points (in each 
direction) used with a fourth-order scheme. (See, for example, 
Hirsch 1983, p. 57.) Figure 2 clearly shows that a 41 x 41 
variable grid is quite adequate for moderate values of Rat. 
Even though solutions reported in this section are of a mixed 
order (second plus fourth), these two facts taken together imply 
that the grid sizes used here are quite adequate. 

The key to the success of the combined method lies in the 
higher order treatment of the boundary vorticity (Equation 29) 
and the higher order solution of the stream-function and 
velocity equations. This particular solution methodology, 
which combines an efficient grid-clustering scheme to place 
very fine grids near the walls together with the higher order 
method is believed to produce very accurate results. 

3.4. Results and discussion 

Since the Prandtl number is greater than 1.0, thermal effects 
are expected to play an important role compared to inertia 
effects. Furthermore, since the Schmidt number is greater than 
Pr, we expect that instability will be mainly caused by buoyancy 
due to species concentration. To reduce the numerical effort, 
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we studied the problem for a square enclosure (AR = 1), 
Le = 100 and for N = + 1. Furthermore, to understand the 
mechanism that leads to instability, we studied the time 
evolution of the various fields for a Rayleigh number (Rat) for 
which a steady-state solution could not be obtained earlier. 

Figure 13 shows snapshots of the velocity, temperature and 
concentration fields for Rar = 1.4 x 104 at different instants of 
time. We observe that the small-time behavior of the system is 
dominated by thermal convection (Figure 13a). As discussed in 
an earlier section, this flow is characterized by the presence of 
two counterrotating cells formed by fluid rising along the 
heated sidewalls. After this initial phase, two weak, solute- 
driven cells rotating in the counterclockwise direction are 
formed at the top and bottom corners of the left sidewall. 
Around z = 2.5, these cells merge together to form a single, 
strong cell at the left wall. This cell is basically driven by solutal 
buoyancy and rotates in the counterclockwise direction. The 
solution at this instant contains three cells, with the middle cell 
rotating in the clockwise direction and the other two cells 
rotating in a counterclockwise direction. After this phase, the 

A 

C 

D 

[ 
Figure 13 Time evolution of the velocity, temperature and 
concentration fields for (a) T = 0.0001, (b) z = 0.50, (c) • = 2.50, 
(d) z = 3.50, (e) z = 5.0 (Notice that the initial phase of convection 
is dominated by thermal effects [two-cell structures as in Figure 
3] .) 
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cells on either side of the middle one start merging together 
and, consequently, the middle cell becomes weaker (Figure 
13d). Later, a large, counterrotating, single cell is formed, with 
the middle cell confined to a relatively narrow region near the 
top corner of the left wall. After this time (i.e., for ~ > 3.5), the 
solution becomes periodic with the corner cell periodically 
increasing and decreasing in size. Hence, the large single cell is 
formed due to the augmentation of solutal and thermal 
buoyancies, while the smaller corner cell is induced by thermal 
buoyancy alone. This interaction is found to give rise to the 
instability. 

To understand the phenomenon further, the phase portraits 
and power spectra of the solutions have been obtained for 
different Rar.  Power spectra have been computed from the time 
series of species concentration using well-known, discrete FFT  
techniques and a square window (Press et al. 1992). The time 
history of various quantities has been generated at a point near 
the bottom left corner (0.08, 0.08). 

An interesting feature exhibited by the system is the 
occurrence of oscillatory solutions at a Rayleigh number as low 
as 3,000. Figure 14 shows the large-time oscillations in the 
species concentration at the diagnostic node. The correspond- 
ing phase plane behavior and the normalized power spectrum 
are shown in Figure 15a. The phase portrait shows a limit cycle 
behavior, and the existence of a single dominant frequency in 
the power spectrum shows that the solution is of period one. 
Detailed examination of the solutions indicated that the 
instability is caused by the secondary flow induced due to 
interaction between the thermal and solutal boundary layers. 
Figure 16 shows the stream-function plots at three different 
instants of time for Ra r = 3 x 10 3. It can be clearly seen that 
the corner cell decreases in size. The stream-function plots 
shown in Figure 16 show a sequence of events over half the 
period of oscillation. Events during the other half period are 
essentially similar, except that the cell increases in size. It is 
interesting to note that these secondary corner vortices are 
found to be present even when the solution is steady. However, 
their size is relatively much smaller and does not change with 
time. 

Further period doublings P2 and P4 have been observed at 
Rayleigh numbers 1.15 x 104 and 1.35 x 104, respectively. 
Phase plane behavior and the power spectrum for the P2 
solution is shown in Figure 15b. Stream-function plots for the 
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Figure 14 Oscillatory solutions: Time series of species concentra- 
tion for different RaT: (a) RaT = 3 × 103, (b) RaT = 1.15 × 104, (c) 
R a T = I . 4 ×  104 

Figure 15 Phase portraits (C versus v) and normalized power 
spectra (C) at the point (0.08,0.08): (a) R a t = 3  × 103, (b) 
RaT= 1.15 × 104, (c) RaT= 1.4 × 104 , (d) R a r = l . 9  × 104 , (e) 
RaT = 2.5 × 104 

P2 solution at three different instants of time are shown in 
Figure 17 for half the period of oscillation. The corresponding 
P4 solution is qualitatively similar and hence is not shown here. 
Chaotic solutions (N) marked by irregular, tangled paths in the 
phase plane together with the presence of broad-band noise in 
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the power spectra have been first observed at a Rayleigh 
number of 1.45 x 104. This chaotic regime extended up to 
Ra t  = 1.9 x 104. Phase plane behavior and power spectra for 
two chaotic solutions are shown in Figures 15c and 15d. A 
calculation of the Lyapunov exponents based on the algorithm 
of Wolf et al. (1985) showed that for this range, the maximum 
Lyapunov exponent is positive. Since the Lyapunov exponent 
gives an indication of the growth rate of initial perturbations, 
a positive exponent confirms the presence of chaos in the 
system. Further increase in the Rayleigh number resulted in 
reverse t ransi t ion--a  situation in which the solutions reverted 
back to the periodic type and eventually reached a stable, 
steady state. Figure 15e shows the phase plane and power 
spectrum for a solution during reverse transition. Hence, in the 
Rayleigh number range of 3 x 103-3 x 104, a complete 
spectrum of period doublings and period halvings has been 
observed. 

As noted earlier, stable, steady-state solutions could not be 
obtained above a Rayleigh number Ra t  = 106 when the Lewis 
number is fixed at 10. An examination of the time series, phase 
plane behavior of the system and the power spectrum showed 
that a simple periodic solution has been obtained. Hence, this 
bifurcation point represents a transition from steady to periodic 
convection. Limit cycle behavior for this Rayleigh number is 
shown in Figure 18. For  this Lewis number (10), the route to 
chaos has been found to be essentially similar, except that the 
bifurcation points are different. 

In conclusion, the system has been found to exhibit the route 
S ~ P --* P2 --* P4. ~ N. Subharmonic bifurcations above P ,  
have not been observed. It is difficult to capture these 
bifurcations, as the interval between successive bifurcations 
decreases rapidly with increasing Rat .  However, a bifurcation 
diagram obtained by plotting the successive maxima in 
concentration against the Rayleigh number did not show any 
subharmonic bifurcations above P , .  In view of the fact that 
confined buoyant flows exhibit only a few degrees of freedom, 
we believe that for this system only four bifurcations are needed 
before chaos is reached. 

A B C 

Figure 16 Simple periodic solution at RaT= 3 x 103: Stream- 
function plots at three different instants of time shown for half the 
period of oscillation 

A B C 

Figure 17 P2--Periodic solution at RaT= 1.15 x 104: Stream- 
function plots at different instants of time shown for half the period 
of oscillation 
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Figure 18 Limit cycle behavior at RaT= 10 ~ for Le = 10 

4. Conclus ions 

The problem of thermosolutal convection in a rectangular 
enclosure has been studied for a case in which the bottom and 
sidewalls are heated. Complex, multicell structures and 
unsteady solutions have been obtained depending on the 
parameters. Steady-state solutions could not be obtained in the 
Rayleigh number range of 3,000-30,000 for a Lewis number of 
100. Results obtained using an unsteady model indicated that 
successive flow bifurcations take place in this range until the 
flow becomes chaotic. Additional increase in the Rayleigh 
number brought about a reverse transition to steady state. 
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